Annotations Best Practices

Release 3.14.0a0
Guido van Rossum and the Python development team

October 09, 2024

Python Software Foundation
Email: docs@python.org

Contents
1 Accessing The Annotations Dict Of An Object In Python 3.10 And Newer 2
2 Accessing The Annotations Dict Of An Object In Python 3.9 And Older 2
3 Manually Un-Stringizing Stringized Annotations 3
4 Best Practices For __annotations__ In Any Python Version 3
5 _ annotations__ Quirks 4
Index 5
author
Larry Hastings
Abstract

This document is designed to encapsulate the best practices for working with annotations dicts. If you write
Python code that examines __annotations__ on Python objects, we encourage you to follow the guidelines
described below.

The document is organized into four sections: best practices for accessing the annotations of an object in
Python versions 3.10 and newer, best practices for accessing the annotations of an object in Python versions
3.9 and older, other best practices for __annotations__ that apply to any Python version, and quirks of
__annotations__.

Note that this document is specifically about working with __annotations__, not uses for annotations. If

you’re looking for information on how to use “type hints” in your code, please see the t yping module.

1 Accessing The Annotations Dict Of An Object In Python 3.10 And
Newer

Python 3.10 adds a new function to the standard library: inspect .get_annotations (). In Python versions
3.10 through 3.13, calling this function is the best practice for accessing the annotations dict of any object that
supports annotations. This function can also “un-stringize” stringized annotations for you.

In Python 3.14, there is a new annotationlib module with functionality for working with annota-
tions. This includes a annotationlib.get_annotations () function, which supersedes inspect.
get_annotations ().

If for some reason inspect.get_annotations () isn't viable for your use case, you may access the
__annotations__ data member manually. Best practice for this changed in Python 3.10 as well: as of
Python 3.10, o.__annotations__ is guaranteed to always work on Python functions, classes, and mod-
ules. If youre certain the object you're examining is one of these three specific objects, you may simply use o .
__annotations__ to get at the object’s annotations dict.

However, other types of callables—for example, callables created by functools.partial ()-may not have an
__annotations___ attribute defined. When accessing the __annotations___ of a possibly unknown ob-
ject, best practice in Python versions 3.10 and newer is to call getattr () with three arguments, for example
getattr (o, '__annotations__', None).

Before Python 3.10, accessing __annotations__ on a class that defines no annotations but that has a parent
class with annotations would return the parent’s __annotations__. In Python 3.10 and newer, the child class’s
annotations will be an empty dict instead.

2 Accessing The Annotations Dict Of An Object In Python 3.9 And
Older

In Python 3.9 and older, accessing the annotations dict of an object is much more complicated than in newer versions.
The problem is a design flaw in these older versions of Python, specifically to do with class annotations.

Best practice for accessing the annotations dict of other objects—functions, other callables, and modules—is the same
as best practice for 3.10, assuming you aren’t calling inspect .get_annotations (): you should use three-
argument getattr () to access the object’s __annotations___ attribute.

Unfortunately, this isn’t best practice for classes. The problem is that, since __annotations___ is optional on
classes, and because classes can inherit attributes from their base classes, accessing the __annotations__ at-
tribute of a class may inadvertently return the annotations dict of a base class. As an example:

class Base:
a: int = 3
b: str = 'abc'

class Derived (Base) :
pass

print (Derived. annotations_)

This will print the annotations dict from Base, not Derived.

Your code will have to have a separate code path if the object you're examining is a class (isinstance (o,
type)). In that case, best practice relies on an implementation detail of Python 3.9 and before: if a class has
annotations defined, they are stored in the class’s __dict___ dictionary. Since the class may or may not have
annotations defined, best practice is to call the get () method on the class dict.

To put it all together, here is some sample code that safely accessesthe __annotations__ attribute on an arbitrary
object in Python 3.9 and before:

if isinstance (o, type):

ann = o. dict .get ('__annotations__', None)
else:

ann = getattr(o, '_ _annotations__', None)

After running this code, ann should be either a dictionary or None. You’re encouraged to double-check the type of
ann using isinstance () before further examination.

Note that some exotic or malformed type objects may not have a __dict__ attribute, so for extra safety you may
also wish to use getattr () toaccess __ dict__ .

3 Manually Un-Stringizing Stringized Annotations

In situations where some annotations may be “stringized”, and you wish to evaluate those strings to produce the
Python values they represent, it really is best to call inspect .get_annotations () to do this work for you.

If you're using Python 3.9 or older, or if for some reason you can’t use inspect.get_annotations (),
you'll need to duplicate its logic. Youre encouraged to examine the implementation of inspect.
get_annotations () in the current Python version and follow a similar approach.

In a nutshell, if you wish to evaluate a stringized annotation on an arbitrary object o:
e If oisamodule,use o.__dict__ asthe globals when calling eval ().

e If o is a class, use sys.modules[o._ module_]._ dict__ as the globals, and
dict (vars (o)) asthe locals, when calling eval ().

o If o is a wrapped callable using functools.update_wrapper (), functools.wraps (), or
functools.partial (), iteratively unwrap it by accessing either o.__wrapped__ or o. func as ap-
propriate, until you have found the root unwrapped function.

« If o is a callable (but not a class), use o.___globals__ as the globals when calling eval ().

However, not all string values used as annotations can be successfully turned into Python values by eval (). String
values could theoretically contain any valid string, and in practice there are valid use cases for type hints that require
annotating with string values that specifically can’t be evaluated. For example:

« PEP 604 union types using |, before support for this was added to Python 3.10.
« Definitions that aren’t needed at runtime, only imported when typing.TYPE_CHECKING is true.

If eval () attempts to evaluate such values, it will fail and raise an exception. So, when designing a library API that
works with annotations, it’s recommended to only attempt to evaluate string values when explicitly requested to by
the caller.

4 Best Practices For __annotations__ In Any Python Version

» You should avoid assigning to the __annotations__ member of objects directly. Let Python manage
setting __annotations__ .

« If you do assign directly tothe __annotations__ member of an object, you should always setittoa dict
object.

 You should avoid accessing __annotations___ directly on any object. Instead, use annotationlib.
get_annotations () (Python 3.14+) or inspect.get_annotations () (Python 3.10+).

« If youdodirectly accessthe __annotations__ member of an object, you should ensure that it’s a dictionary
before attempting to examine its contents.

 You should avoid modifying __annotations__ dicts.

e You should avoid deleting the __annotations___ attribute of an object.

https://peps.python.org/pep-0604/

5 _annotations__ Quirks

In all versions of Python 3, function objects lazy-create an annotations dict if no annotations are defined on that
object. You can delete the _ _annotations__ attribute using del fn.__annotations__, but if you
then access fn.__annotations__ the object will create a new empty dict that it will store and return as
its annotations. Deleting the annotations on a function before it has lazily created its annotations dict will throw
an AttributeError; using del fn.__annotations___ twice in a row is guaranteed to always throw an
AttributeError.

Everything in the above paragraph also applies to class and module objects in Python 3.10 and newer.

In all versions of Python 3, you canset __annotations__ onafunction object to None. However, subsequently
accessing the annotations on that object using fn.___annotations__ will lazy-create an empty dictionary as per
the first paragraph of this section. This is not true of modules and classes, in any Python version; those objects permit
setting __annotations___ to any Python value, and will retain whatever value is set.

If Python stringizes your annotations for you (using from __ future_ import annotations), and you
specify a string as an annotation, the string will itself be quoted. In effect the annotation is quoted rwice. For example:

from _ future__ import annotations

def foo(a: "str"): pass
print (foo.__annotations_)
This prints { 'a': "'str'"}. This shouldn’t really be considered a “quirk”; it’'s mentioned here simply because

it might be surprising.

If you use a class with a custom metaclass and access __annotations__ on the class, you may observe
unexpected behavior; see 749 for some examples. You can avoid these quirks by using annotationlib.
get_annotations () on Python 3.14+ or inspect.get_annotations () on Python 3.10+. On earlier
versions of Python, you can avoid these bugs by accessing the annotations from the class’s __dict__ (e.g., cls.
__dict__.get ('__annotations__', None)).

https://peps.python.org/pep-0749/#pep749-metaclasses

Index
F)

Python Enhancement Proposals
PEP 604,3
PEP 749#pep749-metaclasses,4

	Accessing The Annotations Dict Of An Object In Python 3.10 And Newer
	Accessing The Annotations Dict Of An Object In Python 3.9 And Older
	Manually Un-Stringizing Stringized Annotations
	Best Practices For __annotations__ In Any Python Version
	__annotations__ Quirks
	Index

