What's New in Python

Release 3.14.0a0

A. M. Kuchling

October 09, 2024

Python Software Foundation
Email: docs@python.org

Contents
1 Summary - Release highlights 2
2 New Features 2
2.1 PEP 649: Deferred Evaluation of Annotations v v v i it et 2
2.2 Improved Error MESSages v v v v vt i e e e e e e e e e e e e e e e e e e 4
3 Other Language Changes 4
4 New Modules 4
5 Improved Modules 4
5.1 argparseo e e e e e e e e e e e e e e e e e 4
5.2 St . . e e e e e e e e 4
53 CLYPES . v v v e e e e e 5
54 diS .o 5
5.5 fractions e e e e e e e e e e e e e e 5
5.6 functools L e e e e e e e e e 5
57 http . oo 5
5.8 INSPECL e e e e e e e e e e e e e e 5
59 JSON ... e e e 5
510 0perator e 6
ST datetime L e e e e e e e e e e e e e e e e e 6
5.2 08 L e e e e e e e e 6
5.13 pathlib o o e 6
504 pdb .o e 6
5.5 pickle . .o e e e e e e e e e e 6
506 pydoc . .o L e e e e e e e e e 7
57 symtableo L e e e e e e e e e e e e e 7
5.18 unicodedata L. L e e e e e e e e e e 7
6 Optimizations 7
6.1 asynClo. L e e e e e e e e e e 7
7 Deprecated 7
7.1 Pending Removal in Python 3.15 e 8
7.2 Pending Removal in Python 3.16 L 8
7.3 Pending Removal in Future Versions L o 9

8 Removed 11

.l AIZPATSE . . v v i e 11
8.2 ASL . L e e 11
8.3 ASYNCIO . .« . v i e e e e e e e e e e e e 12
8.4 collections.abe L L e e e e e 12
8.5 email e e e e 12
8.6 IMportlib. L e e e e e e e e e e 13
8.7 IErtOOlS . . . v e e e e e e e e e e 13
8.8 pathlib e 13
8.0 LY . e e e e 13
8.10 sqlite3 e e e 13
.11 tyPING . o o o v e e e e e e e e e e e e e e e e 13
A2 urllib e e e e e e e e 14
813 Others o e e e e 14
9 Porting to Python 3.14 14
9.1 Changesinthe Python APT e 14
10 Build Changes 14
11 C API Changes 14
11.1 New Features e e e e e e e e e 14
11.2 Portingto Python 3.14 e e e e e e 16
11.3 Deprecated o o i i e e e e e e e e e e e e e 16
11.4 Removed e e e e e e e e e e e e e e e e e 17
Index 18
Editor
TBD

This article explains the new features in Python 3.14, compared to 3.13.

For full details, see the changelog.

Note

Prerelease users should be aware that this document is currently in draft form. It will be updated substantially as
Python 3.14 moves towards release, so it’s worth checking back even after reading earlier versions.

1 Summary - Release highlights

2 New Features

2.1 PEP 649: Deferred Evaluation of Annotations

The annotations on functions, classes, and modules are no longer evaluated eagerly. Instead, annotations are stored in
special-purpose annotate functions and evaluated only when necessary. This is specified in PEP 649 and PEP 749.

This change is designed to make annotations in Python more performant and more usable in most circumstances.
The runtime cost for defining annotations is minimized, but it remains possible to introspect annotations at runtime.
It is usually no longer necessary to enclose annotations in strings if they contain forward references.

The new annotationlib module provides tools for inspecting deferred annotations. Annotations may be evalu-
ated in the VALUE format (which evaluates annotations to runtime values, similar to the behavior in earlier Python

https://peps.python.org/pep-0649/
https://peps.python.org/pep-0749/

versions), the FORWARDREF format (which replaces undefined names with special markers), and the STRING for-
mat (which returns annotations as strings).

This example shows how these formats behave:

>>> from annotationlib import get_annotations, Format
>>> def func(arg: Undefined) :

pass
>>> get_annotations (func, format=Format.VALUE)
Traceback (most recent call last):

NameError: name 'Undefined' is not defined

>>> get_annotations (func, format=Format.FORWARDREF)
{'arg': ForwardRef ('Undefined’') }

>>> get_annotations (func, format=Format.STRING)
{'arg': 'Undefined'}

Implications for annotated code

If you define annotations in your code (for example, for use with a static type checker), then this change probably
does not affect you: you can keep writing annotations the same way you did with previous versions of Python.

You will likely be able to remove quoted strings in annotations, which are frequently used for forward references.
Similarly, if youuse from __ future__ import annotations to avoid having to write strings in annota-
tions, you may well be able to remove that import. However, if you rely on third-party libraries that read annotations,
those libraries may need changes to support unquoted annotations before they work as expected.

Implications for readers of __annotations_

If your code reads the __annotations___ attribute on objects, you may want to make changes in order to support
code that relies on deferred evaluation of annotations. For example, you may want to use annotationlib.
get_annotations () with the FORWARDREF format, as the dataclasses module now does.

Related changes

The changes in Python 3.14 are designed to rework how __annotations__ works at runtime while minimizing
breakage to code that contains annotations in source code and to code that reads ___annotations__. However,
if you rely on undocumented details of the annotation behavior or on private functions in the standard library, there
are many ways in which your code may not work in Python 3.14. To safeguard your code against future changes, use
only the documented functionality of the annotationlib module.

from _ future__ import annotations

In Python 3.7, PEP 563 introduced the from __ future__ import annotations directive, which turns
all annotations into strings. This directive is now considered deprecated and it is expected to be removed in a fu-
ture version of Python. However, this removal will not happen until after Python 3.13, the last version of Python
without deferred evaluation of annotations, reaches its end of life. In Python 3.14, the behavior of code using from
_ future__ import annotations isunchanged.

https://peps.python.org/pep-0563/

2.2 Improved Error Messages

» When unpacking assignment fails due to incorrect number of variables, the error message prints the received
number of values in more cases than before. (Contributed by Tushar Sadhwani in gh-122239.)

>>> x, vy, z =1, 2, 3, 4
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
X, vy, 2z =1, 2, 3, 4

AAAAAAA

ValueError: too many values to unpack (expected 3, got 4)

3 Other Language Changes

« Incorrect usage of await and asynchronous comprehensions is now detected even if the code is optimized
away by the —O command line option. For example, python -0 —-c 'assert await 1' now pro-
duces a SyntaxError. (Contributed by Jelle Zijlstra in gh-121637.)

e Writes to ___debug___ are now detected even if the code is optimized away by the —O command line option.
For example, python -O -c 'assert (__debug__ := 1)' now produces a SyntaxError.
(Contributed by Irit Katriel in gh-122245.)

e Add class methods float . from_number () and complex.from_number () to convert a number to
float or complex type correspondingly. They raise an error if the argument is a string. (Contributed by
Serhiy Storchaka in gh-84978.)

4 New Modules

e annotationlib: For introspecting annotations. See PEP 749 for more details. (Contributed by Jelle
Zijlstra in gh-119180.)

5 Improved Modules

5.1 argparse

« The default value of the program name for argparse . ArgumentParser now reflects the way the Python
interpreter was instructed to find the __main__ module code. (Contributed by Serhiy Storchaka and Alyssa
Coghlan in gh-66436.)

5.2 ast
e Add ast.compare () for comparing two ASTs. (Contributed by Batuhan Taskaya and Jeremy Hylton in
bpo-15987.)
o Add support for copy.replace () for AST nodes. (Contributed by Bénédikt Tran in gh-121141.)

o Docstrings are now removed from an optimized AST in optimization level 2. (Contributed by Irit Katriel in
gh-123958.)

e The repr () output for AST nodes now includes more information. (Contributed by Tomas R in gh-116022.)

https://github.com/python/cpython/issues/122239
https://github.com/python/cpython/issues/121637
https://github.com/python/cpython/issues/122245
https://github.com/python/cpython/issues/84978
https://peps.python.org/pep-0749/
https://github.com/python/cpython/issues/119180
https://github.com/python/cpython/issues/66436
https://bugs.python.org/issue?@action=redirect&bpo=15987
https://github.com/python/cpython/issues/121141
https://github.com/python/cpython/issues/123958
https://github.com/python/cpython/issues/116022

5.3 ctypes
o The layout of bit fields in St ructure and Union now matches platform defaults (GCC/Clang or MVSC)
more closely. In particular, fields no longer overlap. (Contributed by Matthias Gorgens in gh-97702.)

e The Structure._layout_ class attribute can now be set to help match a non-default ABI. (Contributed
by Petr Viktorin in gh-97702.)

5.4 dis

o Add support for rendering full source location information of instructions, rather than only the line
number. This feature is added to the following interfaces via the show_positions keyword argument:

- dis.Bytecode,
— dis.dis(),dis.distb (), and
- dis.disassemble ().

This feature is also exposed viadis —-show-positions. (Contributed by Bénédikt Tran in gh-123165.)

5.5 fractions

« Add support for converting any objects that have the as_integer_ratio () method to a Fraction.
(Contributed by Serhiy Storchaka in gh-82017.)

5.6 functools

e Add support to functools.partial () and functools.partialmethod () for functools.
Placeholder sentinels to reserve a place for positional arguments. (Contributed by Dominykas Grigonis
in gh-119127.)

5.7 http

« Directory lists and error pages generated by the ht tp . server module allow the browser to apply its default
dark mode. (Contributed by Yorik Hansen in gh-123430.)

5.8 inspect
e inspect.signature () takes a new argument annotation_format to control the annotationlib.
Format used for representing annotations. (Contributed by Jelle Zijlstra in gh-101552.)

e inspect.Signature. format () takes a new argument unquote_annotations. If true, string annotations
are displayed without surrounding quotes. (Contributed by Jelle Zijlstra in gh-101552.)

5.9 json
« Add notes for JSON serialization errors that allow to identify the source of the error. (Contributed by Serhiy
Storchaka in gh-122163.)

o Enable the json module to work as a script using the —m switch: python -m json. See the JSON
command-line interface documentation. (Contributed by Trey Hunner in gh-122873.)

https://github.com/python/cpython/issues/97702
https://github.com/python/cpython/issues/97702
https://github.com/python/cpython/issues/123165
https://github.com/python/cpython/issues/82017
https://github.com/python/cpython/issues/119127
https://github.com/python/cpython/issues/123430
https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/122163
https://github.com/python/cpython/issues/122873

5.10 operator

e« Two new functions operator.is_none() and operator.is_not_none () have been
added, such that operator.is_none (obj) is equivalent to obj is None and operator.
is_not_none (obj) is equivalent to obj is not None. (Contributed by Raymond Hettinger and
Nico Mekxis in gh-115808.)

5.11 datetime

e Adddatetime.time.strptime () and datetime.date.strptime (). (Contributed by Wannes
Boeykens in gh-41431.)

5.12 os

e Add the os.environ.refresh () method to update os.environ with changes to the environment
made by os.putenv (), by os.unsetenv (), or made outside Python in the same process. (Contributed
by Victor Stinner in gh-120057.)

5.13 pathlib

o Add methods to pathlib.Path to recursively copy or move files and directories:
- copy () copies a file or directory tree to a destination.
- copy_into () copies into a destination directory.
- move () moves a file or directory tree to a destination.
- move_into () moves info a destination directory.

(Contributed by Barney Gale in gh-73991.)

5.14 pdb

o Hard-coded breakpoints (breakpoint () and pdb.set_trace ()) now reuse the most recent Pdb in-
stance that calls set_trace (), instead of creating a new one each time. As a result, all the instance specific
data like display and commands are preserved across hard-coded breakpoints. (Contributed by Tian Gao
in gh-121450.)

¢ Add a new argument mode to pdb . Pdb. Disable the restart command when pdb is in inline mode.
(Contributed by Tian Gao in gh-123757.)

5.15 pickle

« Set the default protocol version on the pickle module to 5. For more details, see pickle protocols.

« Add notes for pickle serialization errors that allow to identify the source of the error. (Contributed by Serhiy
Storchaka in gh-122213.)

https://github.com/python/cpython/issues/115808
https://github.com/python/cpython/issues/41431
https://github.com/python/cpython/issues/120057
https://github.com/python/cpython/issues/73991
https://github.com/python/cpython/issues/121450
https://github.com/python/cpython/issues/123757
https://github.com/python/cpython/issues/122213

5.16 pydoc

« Annotations in help output are now usually displayed in a format closer to that in the original source. (Con-
tributed by Jelle Zijlstra in gh-101552.)

5.17 symtable

« Expose the following symtable.Symbol methods:
- is_free_class()
- is_comp_iter()
- is_comp_cell ()

(Contributed by Bénédikt Tran in gh-120029.)

5.18 unicodedata

» The Unicode database has been updated to Unicode 16.0.0.

6 Optimizations

6.1 asyncio

e asyncio now uses double linked list implementation for native tasks which speeds up execution by 10%
on standard pyperformance benchmarks and reduces memory usage. (Contributed by Kumar Aditya in gh-
107803.)

7 Deprecated

e asyncio: asyncio.iscoroutinefunction () is deprecated and will be removed in Python 3.16,
use inspect.iscoroutinefunction () instead. (Contributed by Jiahao Li and Kumar Aditya in gh-
122875.)

e builtins: Passing a complex number as the real or imag argument in the complex () constructor is now
deprecated; it should only be passed as a single positional argument. (Contributed by Serhiy Storchaka in
¢h-109218.)

e multiprocessing and concurrent.futures: The default start method (see multiprocessing-start-
methods) changed away from fork to forkserver on platforms where it was not already spawn (Windows &
macOS). If you require the threading incompatible fork start method you must explicitly specify it when using
multiprocessingor concurrent.futures APIs. (Contributed by Gregory P. Smith in gh-84559.)

» os: Soft deprecate os .popen () and os . spawn* functions. They should no longer be used to write new
code. The subprocess module is recommended instead. (Contributed by Victor Stinner in gh-120743.)

e symtable: Deprecate symtable.Class.get_methods () due to the lack of interest. (Contributed
by Bénédikt Tran in gh-119698.)

https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/120029
https://github.com/python/cpython/issues/107803
https://github.com/python/cpython/issues/107803
https://github.com/python/cpython/issues/122875
https://github.com/python/cpython/issues/122875
https://github.com/python/cpython/issues/109218
https://github.com/python/cpython/issues/84559
https://github.com/python/cpython/issues/120743
https://github.com/python/cpython/issues/119698

7.1 Pending Removal in Python 3.15

e Cctypes:
- The undocumented ctypes.SetPointerType () function has been deprecated since Python 3.13.
e http.server:

— The obsolete and rarely used CGTHTTPRequestHandler has been deprecated since Python 3.13. No
direct replacement exists. Anything is better than CGI to interface a web server with a request handler.

- The —-cgi flag to the python -m http.server command-line interface has been deprecated
since Python 3.13.

e importlib: _ package__ and _ cached__ will cease to be set or taken into consideration by the
import system (gh-97879).

e locale:

- The getdefaultlocale () function has been deprecated since Python 3.11. Its removal was origi-
nally planned for Python 3.13 (gh-90817), but has been postponed to Python 3.15. Use get locale (),
setlocale (),and getencoding () instead. (Contributed by Hugo van Kemenade in gh-111187.)

e pathlib:

- PurePath.is_reserved() has been deprecated since Python 3.13. Use os.path.
isreserved () to detect reserved paths on Windows.

e platform:

- java_ver () has been deprecated since Python 3.13. This function is only useful for Jython support,
has a confusing API, and is largely untested.

e threading:

- RLock () will take no arguments in Python 3.15. Passing any arguments has been deprecated since
Python 3.14, as the Python version does not permit any arguments, but the C version allows any number
of positional or keyword arguments, ignoring every argument.

e typing:

— The undocumented keyword argument syntax for creating NamedTuple classes (e.g. Point =
NamedTuple ("Point", x=int, y=int)) has been deprecated since Python 3.13. Use the
class-based syntax or the functional syntax instead.

- The typing.no_type_check_decorator () decorator function has been deprecated since
Python 3.13. After eight years in the t yping module, it has yet to be supported by any major type
checker.

s wave:

- The getmark (), setmark(), and getmarkers () methods of the Wave_read and
Wave_write classes have been deprecated since Python 3.13.

7.2 Pending Removal in Python 3.16

e builtins:

- Bitwise inversion on boolean types, ~True or ~False has been deprecated since Python 3.12, as it
produces surprising and unintuitive results (-2 and —1). Use not x instead for the logical negation of
a Boolean. In the rare case that you need the bitwise inversion of the underlying integer, convert to int
explicitly (~int (x)).

e array:

— The 'u' format code (wchar_t)has been deprecated in documentation since Python 3.3 and at runtime
since Python 3.13. Use the 'w' format code (Py_UCS4) for Unicode characters instead.

https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/90817
https://github.com/python/cpython/issues/111187

e asyncio:

- asyncio: asyncio.iscoroutinefunction () is deprecated and will be removed in Python
3.16, use inspect.iscoroutinefunction () instead. (Contributed by Jiahao Li and Kumar
Aditya in gh-122875.)

e shutil:

- The ExecError exception has been deprecated since Python 3.14. It has not been used by any function
in shutil since Python 3.4, and is now an alias of RuntimeError.

¢ symtable:
- The Class.get_methods method has been deprecated since Python 3.14.
e Sys:

- The _enablelegacywindowsfsencoding () function has been deprecated since Python 3.13.
Use the PYTHONLEGACYWINDOWSFSENCODING environment variable instead.

e tarfile:

- The undocumented and unused TarFile.tarfile attribute has been deprecated since Python 3.13.

7.3 Pending Removal in Future Versions

The following APIs will be removed in the future, although there is currently no date scheduled for their removal.
e argparse: Nesting argument groups and nesting mutually exclusive groups are deprecated.
e array’s 'u' format code (gh-57281)
e builtins:
- bool (NotImplemented).

- Generators: throw (type, exc, tb) andathrow(type, exc, tb) signatureis deprecated:
use throw (exc) and athrow (exc) instead, the single argument signature.

— Currently Python accepts numeric literals immediately followed by keywords, for example 0in x, lor
x,01f lelse 2. It allows confusing and ambiguous expressions like [0x1for x in y] (which
can be interpreted as [0x1 for x in y] or [0x1f or x in y]). A syntax warning is raised
if the numeric literal is immediately followed by one of keywords and, else, for, if, in, is and
or. In a future release it will be changed to a syntax error. (gh-87999)

— Support for __index__ () and __int__ () method returning non-int type: these methods will be
required to return an instance of a strict subclass of int.

— Support for __float__ () method returning a strict subclass of float: these methods will be re-
quired to return an instance of float.

- Support for __complex__ () method returning a strict subclass of complex: these methods will be
required to return an instance of complex.

- Delegation of int () to __trunc__ () method.

- Passing a complex number as the real or imag argument in the complex () constructor is now dep-
recated; it should only be passed as a single positional argument. (Contributed by Serhiy Storchaka in
¢h-109218.)

e calendar: calendar.January and calendar.February constants are deprecated and replaced
by calendar.JANUARY and calendar .FEBRUARY. (Contributed by Prince Roshan in gh-103636.)

e codeobject.co_lnotab: use the codeobject.co_lines () method instead.
e datetime:

— utcnow ():use datetime.datetime.now (tz=datetime.UTC).

https://github.com/python/cpython/issues/122875
https://github.com/python/cpython/issues/57281
https://github.com/python/cpython/issues/87999
https://github.com/python/cpython/issues/109218
https://github.com/python/cpython/issues/103636

- utcfromtimestamp (): use datetime.datetime.fromtimestamp (timestamp,
tz=datetime.UTC).

o gettext: Plural value must be an integer.
e importlib:
— load_module () method: use exec_module () instead.

- cache_from_source () debug_override parameter is deprecated: use the optimization parameter
instead.

e importlib.metadata:
- EntryPoints tuple interface.
- Implicit None on return values.
e logging: the warn () method has been deprecated since Python 3.3, use warning () instead.
e mailbox: Use of StringlO input and text mode is deprecated, use BytesIO and binary mode instead.
e os: Calling os.register_at_fork () in multi-threaded process.

e pydoc.ErrorDuringImport: A tuple value for exc_info parameter is deprecated, use an exception in-
stance.

« re: More strict rules are now applied for numerical group references and group names in regular expressions.
Only sequence of ASCII digits is now accepted as a numerical reference. The group name in bytes patterns
and replacement strings can now only contain ASCII letters and digits and underscore. (Contributed by Serhiy
Storchaka in gh-91760.)

e sre_compile, sre_constants and sre_parse modules.
e shutil: rmtree ()’s onerror parameter is deprecated in Python 3.12; use the onexc parameter instead.
« ss1 options and protocols:

- ssl.SSLContext without protocol argument is deprecated.

- ssl.SSLContext: set_npn_protocols () and selected_npn_protocol () are depre-
cated: use ALPN instead.

- ss1.0P_NO_SSL* options

- ss1.0P_NO_TLS* options

- $s1.PROTOCOL_SSLv3

- ss1.PROTOCOL_TLS

- ss1.PROTOCOL_TLSv1

- $s1.PROTOCOL_TLSv1_1

- $s1.PROTOCOL_TLSv1_2

- ssl.TLSVersion.SSLv3

- ssl.TLSVersion.TLSv1

- ssl1.TLSVersion.TLSv1_1
e sysconfig.is_python_build() check_home parameter is deprecated and ignored.
e threading methods:

- threading.Condition.notifyAll ():usenotify_all().

- threading.Event.isSet ():use is_set ().

- threading.Thread.isDaemon (), threading.Thread.setDaemon (): use
threading.Thread.daemon attribute.

10

https://github.com/python/cpython/issues/91760

- threading.Thread.getName (), threading.Thread.setName (): use threading.
Thread.name attribute.

- threading.currentThread(): use threading.current_thread().
- threading.activeCount (): use threading.active_count ().
e typing.Text (gh-92332).

e unittest.IsolatedAsyncioTestCase: itis deprecated to return a value that is not None from a
test case.

e« urllib.parse deprecated functions: urlparse () instead
- splitattr ()
- splithost ()
- splitnport ()
- splitpasswd()
- splitport ()
- splitquery ()
- splittag()
- splittype ()
- splituser ()
- splitvalue ()
- to_bytes|()

e urllib.request: URLopener and FancyURLopener style of invoking requests is deprecated. Use
newer urlopen () functions and methods.

e wsgiref: SimpleHandler.stdout.write () should not do partial writes.

e xml.etree.ElementTree: Testing the truth value of an Element is deprecated. In a future release it
will always return True. Prefer explicit len (elem) orelem is not None tests instead.

e zipimport.zipimporter.load_module () is deprecated: use exec_module () instead.

8 Removed

8.1 argparse

» Remove the type, choices, and metavar parameters of argparse.BooleanOptionalAction. They
were deprecated since 3.12.

8.2 ast

« Remove the following classes. They were all deprecated since Python 3.8, and have emitted deprecation warn-
ings since Python 3.12:

- ast.Num

- ast.Str

- ast.Bytes

- ast.NameConstant

- ast.Ellipsis

11

https://github.com/python/cpython/issues/92332

Use ast.Constant instead. As a consequence of these removals, user-defined visit_Num,
visit_Str, visit_Bytes, visit_NameConstant and visit_Ellipsis methods on custom
ast .NodeVisitor subclasses will no longer be called when the NodeVisitor subclass is visiting an
AST. Define a visit_Constant method instead.

Also, remove the following deprecated properties on ast . Constant, which were present for compatibility
with the now-removed AST classes:

- ast.Constant.n

- ast.Constant.s

Use ast.Constant .value instead.

(Contributed by Alex Waygood in gh-119562.)

8.3 asyncio

« Remove the following classes and functions. They were all deprecated and emitted deprecation warnings since
Python 3.12:

asyncio.
asyncio.
asyncio.
asyncio.
asyncio.
asyncio.
asyncio.
asyncio.
asyncio.

asyncio.

AbstractChildWatcher

SafeChildWatcher

MultiLoopChildWatcher

FastChildWatcher

ThreadedChildWatcher

PidfdChildWatcher
AbstractEventLoopPolicy.get_child_watcher ()
AbstractEventLoopPolicy.set_child_watcher ()
get_child_watcher ()

set_child_watcher ()

(Contributed by Kumar Aditya in gh-120804.)

8.4 collections.abc

e« Remove collections.abc.ByteString. It had previously raised a DeprecationWarning since
Python 3.12.

8.5 email

o Remove the isdst parameter from email.utils.localtime (). (Contributed by Hugo van Kemenade
in gh-118798.)

12

https://github.com/python/cpython/issues/119562
https://github.com/python/cpython/issues/120804
https://github.com/python/cpython/issues/118798

8.6 importlib

» Remove deprecated importlib.abc classes:
- importlib.abc.ResourceReader
- importlib.abc.Traversable
— importlib.abc.TraversableResources
Use importlib.resources.abc classes instead:
- importlib.resources.abc.Traversable
— importlib.resources.abc.TraversableResources

(Contributed by Jason R. Coombs and Hugo van Kemenade in gh-93963.)

8.7 itertools

« Remove itertools support for copy, deepcopy, and pickle operations. These had previously raised a
DeprecationWarning since Python 3.12. (Contributed by Raymond Hettinger in gh-101588.)

8.8 pathlib

« Remove support for passing additional keyword arguments to pathlib.Path. In previous versions, any
such arguments are ignored.

« Remove support for passing additional positional arguments to pathlib.PurePath.relative_to ()
and is_relative_to (). In previous versions, any such arguments are joined onto other.

8.9 pty

« Remove deprecated pty.master_open () and pty.slave_open (). They had previously raised a
DeprecationWarning since Python 3.12. Use pty.openpty () instead. (Contributed by Nikita
Sobolev in gh-118824.)

8.10 sqlite3

» Remove version and version_info from sglite3. (Contributed by Hugo van Kemenade in gh-
118924.)

« Disallow using a sequence of parameters with named placeholders. This had previously raised a
DeprecationWarning since Python 3.12; it will now raise a sqlite3.ProgrammingError. (Con-
tributed by Erlend E. Aasland in gh-118928 and gh-101693.)

8.11 typing

e Remove typing.ByteString. It had previously raised a DeprecationWarning since Python 3.12.

13

https://github.com/python/cpython/issues/93963
https://github.com/python/cpython/issues/101588
https://github.com/python/cpython/issues/118824
https://github.com/python/cpython/issues/118924
https://github.com/python/cpython/issues/118924
https://github.com/python/cpython/issues/118928
https://github.com/python/cpython/issues/101693

8.12 urllib

e« Remove deprecated Quoter class from urllib.parse. It had previously raised a
DeprecationWarning since Python 3.11. (Contributed by Nikita Sobolev in gh-118827.)

8.13 Others

« Using Not Implemented in a boolean context will now raise a TypeError. It had previously raised a
DeprecationWarning since Python 3.9. (Contributed by Jelle Zijlstra in gh-118767.)

e The int () built-in no longer delegatesto ___trunc___ (). Classes that want to support conversion to integer
must implement either __int__ () or __index__ (). (Contributed by Mark Dickinson in gh-119743.)

9 Porting to Python 3.14

This section lists previously described changes and other bugfixes that may require changes to your code.

9.1 Changes in the Python API
e functools.partial is now a method descriptor. Wrapitin staticmethod () if you want to preserve
the old behavior. (Contributed by Serhiy Storchaka and Dominykas Grigonis in gh-121027.)

e The locale.nl_langinfo () function now sets temporarily the LC_CTYPE locale in some cases. This
temporary change affects other threads. (Contributed by Serhiy Storchaka in gh-69998.)

10 Build Changes
11 C API Changes

11.1 New Features
e Add PyLong_GetSign () function to get the sign of int objects. (Contributed by Sergey B Kirpichev in
¢h-116560.)

e Add anew PyUnicodeWriter API to create a Python st r object:
- PyUnicodeWriter_ Create()
- PyUnicodeWriter_ Discard()
- PyUnicodeWriter_Finish ()
- PyUnicodeWriter_WriteChar ()
- PyUnicodeWriter WriteUTFS8 ()
- PyUnicodeWriter WriteUCS4 ()
- PyUnicodeWriter_WriteWideChar ()
- PyUnicodeWriter_WriteStr ()
- PyUnicodeWriter_ WriteRepr ()
- PyUnicodeWriter_WriteSubstring()
— PyUnicodeWriter_ Format ()

- PyUnicodeWriter_DecodeUTF8Stateful ()

14

https://github.com/python/cpython/issues/118827
https://github.com/python/cpython/issues/118767
https://github.com/python/cpython/issues/119743
https://github.com/python/cpython/issues/121027
https://github.com/python/cpython/issues/69998
https://github.com/python/cpython/issues/116560

(Contributed by Victor Stinner in gh-119182.)

e Add PyIter_NextItem() toreplace PyIter_Next (), which has an ambiguous return value. (Con-
tributed by Irit Katriel and Erlend Aasland in gh-105201.)

e Py_Finalize () now deletes all interned strings. This is backwards incompatible to any C-Extension
that holds onto an interned string after a call to Py_Finalize () and is then reused after a call to
Py_TInitialize (). Any issues arising from this behavior will normally result in crashes during the exe-
cution of the subsequent call to Py_Initialize () from accessing uninitialized memory. To fix, use an
address sanitizer to identify any use-after-free coming from an interned string and deallocate it during module
shutdown. (Contributed by Eddie Elizondo in gh-113601.)

o Add new functions to convert C <stdint .h> numbers from/to Python int:
- PyLong_FromInt32 ()
- PyLong_FromInté64 ()
- PyLong_FromUInt32 ()
- PyLong_FromUInt64 ()
- PyLong_AsInt32()
- PyLong_AsInt64 ()
- PyLong_AsUInt32()
- PyLong_AsUInté64 ()

(Contributed by Victor Stinner in gh-120389.)

e Add PyBytes_Join (sep, iterable) function, similar to sep.join (iterable) in Python.
(Contributed by Victor Stinner in gh-121645.)

e Add Py_HashBuffer () to compute and return the hash value of a buffer. (Contributed by Antoine Pitrou
and Victor Stinner in gh-122854.)

« Add functions to get and set the current runtime Python configuration (PEP 741):

- PyConfig_Get ()

PyConfig_GetInt ()

PyConfig_Set ()
- PyConfig_Names ()
(Contributed by Victor Stinner in gh-107954.)
» Add functions to configure the Python initialization (PEP 741):
- PyInitConfig Create()
- PyInitConfig_Free()
- PyInitConfig_GetError ()
- PyInitConfig_ GetExitCode ()
- PyInitConfig_HasOption ()
- PyInitConfig_GetInt ()
- PyInitConfig_GetStr ()
- PyInitConfig GetStrList ()
- PyInitConfig_ FreeStrList ()
- PyInitConfig_ SetInt ()
- PyInitConfig_SetStr ()

- PyInitConfig_SetStrList ()

15

https://github.com/python/cpython/issues/119182
https://github.com/python/cpython/issues/105201
https://github.com/python/cpython/issues/113601
https://github.com/python/cpython/issues/120389
https://github.com/python/cpython/issues/121645
https://github.com/python/cpython/issues/122854
https://peps.python.org/pep-0741/
https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0741/

- PyInitConfig_AddModule ()
- Py_InitializeFromInitConfig/()
(Contributed by Victor Stinner in gh-107954.)

e Add PyType_GetBaseByToken () and Py_tp_token slot for easier superclass identification, which
attempts to resolve the type checking issue mentioned in PEP 630 (gh-124153).

e Add PyUnicode_Equal () function to the limited C API: test if two strings are equal. (Contributed by
Victor Stinner in gh-124502.)

11.2 Porting to Python 3.14

o In the limited C API 3.14 and newer, Py_TYPE () and Py_REFCNT () are now implemented as an opaque
function call to hide implementation details. (Contributed by Victor Stinner in gh-120600 and gh-124127.)

11.3 Deprecated

e Macros Py_IS_NAN, Py_IS_INFINITY and Py_IS_FINITE are soft deprecated, use instead i snan,

isinf and isfinite available from math.h since C99. (Contributed by Sergey B Kirpichev in gh-
119613.)

Pending Removal in Python 3.15

o The bundled copy of 1ibmpdecimal.
e The PyImport_ImportModuleNoBlock (): Use PyImport_ImportModule () instead.

e PyWeakref_GetObject () and PyWeakref GET_OBJECT (): Use PyWeakref_GetRef () in-
stead.

e Py_UNICODE type and the Py_UNICODE_WIDE macro: Use wchar_t instead.
« Python initialization functions:

- PySys_ResetWarnOptions (): Clear sys.warnoptions and warnings.filters in-
stead.

- Py_GetExecPrefix (): Get sys.exec_prefix instead.

- Py_GetPath (): Get sys.path instead.

- Py_GetPrefix (): Get sys.prefix instead.

- Py_GetProgramFullPath (): Get sys.executable instead.
- Py_GetProgramName (): Get sys.executable instead.

- Py_GetPythonHome (): Get PyConfig.home or the PYTHONHOME environment variable in-
stead.

16

https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0630/#type-checking
https://peps.python.org/pep-0630/
https://github.com/python/cpython/issues/124153
https://github.com/python/cpython/issues/124502
https://github.com/python/cpython/issues/120600
https://github.com/python/cpython/issues/124127
https://github.com/python/cpython/issues/119613
https://github.com/python/cpython/issues/119613

Pending Removal in Future Versions
The following APIs are deprecated and will be removed, although there is currently no date scheduled for their
removal.

e« Py_TPFLAGS_HAVE_FINALIZE: Unneeded since Python 3.8.

e PyErr_Fetch(): Use PyErr_GetRaisedException () instead.

e PyErr_NormalizeException(): Use PyErr_GetRaisedException () instead.

e PyErr_Restore (): Use PyErr_SetRaisedException () instead.

e PyModule_GetFilename (): Use PyModule_GetFilenameObject () instead.

e PyOS_AfterFork (): Use PyOS_AfterFork_Child () instead.

e PySlice_GetIndicesEx (): Use PySlice_Unpack () and PySlice_AdjustIndices () in-
stead.

e PyUnicode_AsDecodedObject (): Use PyCodec_Decode () instead.
e PyUnicode_AsDecodedUnicode (): Use PyCodec_Decode () instead.
e PyUnicode_AsEncodedObject (): Use PyCodec_Encode () instead.
e PyUnicode_AsEncodedUnicode (): Use PyCodec_Encode () instead.
e PyUnicode_READY (): Unneeded since Python 3.12
e PyErr_Display(): Use PyErr_DisplayException () instead.
e PyErr_ChainExceptions (): Use _PyErr_ChainExceptionsl () instead.
e« PyBytesObject.ob_shash member: call PyObject_Hash () instead.
e PyDictObject.ma_version_tag member.
o Thread Local Storage (TLS) API:
- PyThread_create_key (): Use PyThread_tss_alloc () instead.
- PyThread_delete_key (): Use PyThread_tss_free () instead.
- PyThread_set_key_value (): Use PyThread_tss_set () instead.
- PyThread_get_key_value (): Use PyThread_tss_get () instead.
- PyThread_delete_key_value (): Use PyThread_tss_delete () instead.

- PyThread_ReInitTLS (): Unneeded since Python 3.7.

11.4 Removed

o Creating immutable types with mutable bases was deprecated since 3.12 and now raises a TypeError.

17

Index
E

environment variable
PYTHONHOME, 16
PYTHONLEGACYWINDOWSEFSENCODING, 9

P

Python Enhancement Proposals
PEP 563,3
PEP 630,16
PEP 649,2
PEP 741,15
PEP 749,2,4
PYTHONHOME, 16
PYTHONLEGACYWINDOWSFSENCODING, 9

18

	Summary – Release highlights
	New Features
	PEP 649: Deferred Evaluation of Annotations
	Implications for annotated code
	Implications for readers of __annotations__
	Related changes
	from __future__ import annotations

	Improved Error Messages

	Other Language Changes
	New Modules
	Improved Modules
	argparse
	ast
	ctypes
	dis
	fractions
	functools
	http
	inspect
	json
	operator
	datetime
	os
	pathlib
	pdb
	pickle
	pydoc
	symtable
	unicodedata

	Optimizations
	asyncio

	Deprecated
	Pending Removal in Python 3.15
	Pending Removal in Python 3.16
	Pending Removal in Future Versions

	Removed
	argparse
	ast
	asyncio
	collections.abc
	email
	importlib
	itertools
	pathlib
	pty
	sqlite3
	typing
	urllib
	Others

	Porting to Python 3.14
	Changes in the Python API

	Build Changes
	C API Changes
	New Features
	Porting to Python 3.14
	Deprecated
	Pending Removal in Python 3.15
	Pending Removal in Future Versions

	Removed

	Index

