Descriptor Guide

Release 3.14.0a0

Guido van Rossum and the Python development team

October 09, 2024

Python Software Foundation
Email: docs@python.org

Contents

1 Primer 3
1.1 Simple example: A descriptor that returns aconstant oL ... 3
1.2 Dynamiclookups e e e e e e e e 3
1.3 Managed attributes L e e e 4
1.4 Customized NAMES v i e e e e e e e e e e e e e e 5
1.5 Closingthoughts e 6

2 Complete Practical Example 6
2.1 Validator class e e e e e e e e e e 7
2.2 Customvalidators L e e e e e e e e 7
2.3 Practical application e e e e e e e e e e e e e e e e e e 8

3 Technical Tutorial 9
3.1 ADSITACE . . . o o e e e e e e e e e e e e e 9
3.2 Definition and introductiono e e e 9
3.3 Descriptor protocol e e e e e e e e e e e e e e e e e e 9
3.4 Overview of descriptor invocation oo e e e 10
3.5 Invocation from aninstance e e e e e e e e 10
3.6 Invocationfromaclass e e e e e e e e e 11
3.7 Invocation from SUPET v v v v v o e 11
3.8 Summary of invocation logic L e e e e e e e 11
3.9 Automatic name notification L L L oL L e e e e e e e e 12
3,10 ORMexample oo o e e e e e e e e e e e e e 12

4 Pure Python Equivalents 13
4.1 Properties o i e e e e e e e e e e e e e e e e 13
4.2 Functionsand methods e e e e e e e 14
43 Kindsof methods e e e e 16
4.4 Staticmethods oL e e e e e e e e e e 16
45 Classmethods o o e e e e 17
4.6 Memberobjectsand __slots__ oL e 18

Author
Raymond Hettinger
Contact

<python at rcn dot com>

Contents

e Descriptor Guide

- Primer
* Simple example: A descriptor that returns a constant
+ Dynamic lookups
* Managed attributes
x Customized names
x Closing thoughts

— Complete Practical Example
* Validator class
* Custom validators
* Practical application

— Technical Tutorial
» Abstract
« Definition and introduction
» Descriptor protocol
x Qverview of descriptor invocation
* Invocation from an instance
+ Invocation from a class
* Invocation from super
» Summary of invocation logic
* Automatic name notification
* ORM example

— Pure Python Equivalents
x Properties
» Functions and methods
» Kinds of methods

Static methods

*

x Class methods

x Member objects and __slots__

Descriptors let objects customize attribute lookup, storage, and deletion.
This guide has four major sections:

1) The “primer” gives a basic overview, moving gently from simple examples, adding one feature at a time. Start
here if you’re new to descriptors.

2) The second section shows a complete, practical descriptor example. If you already know the basics, start there.

3) The third section provides a more technical tutorial that goes into the detailed mechanics of how descriptors
work. Most people don’t need this level of detail.

4) The last section has pure Python equivalents for built-in descriptors that are written in C. Read this if you're
curious about how functions turn into bound methods or about the implementation of common tools like
classmethod (), staticmethod (), property (), and _ slots__.

1 Primer

In this primer, we start with the most basic possible example and then we’ll add new capabilities one by one.

1.1 Simple example: A descriptor that returns a constant

The Ten class is a descriptor whose ___get__ () method always returns the constant 10:

class Ten:
def _ get_ (self, obj, objtype=None) :
return 10

To use the descriptor, it must be stored as a class variable in another class:

class A:
x =5 # Regular class attribute
y = Ten() # Descriptor instance

An interactive session shows the difference between normal attribute lookup and descriptor lookup:

>>> a = A() # Make an instance of class A
>>> a.x # Normal attribute lookup

5

>>> a.y # Descriptor lookup

10

In the a.x attribute lookup, the dot operator finds 'x': 5 in the class dictionary. In the a .y lookup, the dot
operator finds a descriptor instance, recognized by its ___get___ method. Calling that method returns 10.

Note that the value 10 is not stored in either the class dictionary or the instance dictionary. Instead, the value 10 is
computed on demand.

This example shows how a simple descriptor works, but it isn’t very useful. For retrieving constants, normal attribute
lookup would be better.

In the next section, we'll create something more useful, a dynamic lookup.

1.2 Dynamic lookups

Interesting descriptors typically run computations instead of returning constants:

import os
class DirectorySize:

def _ get_ (self, obj, objtype=None) :
return len(os.listdir (obj.dirname))

class Directory:

size = DirectorySize () # Descriptor instance
def _ init_ (self, dirname):
self.dirname = dirname # Regular instance attribute

An interactive session shows that the lookup is dynamic — it computes different, updated answers each time:

>>> s = Directory('songs')

>>> = Directory('games')

>>> s.size # The songs directory has twenty files
20

>>> g.size # The games directory has three files

3

>>> os.remove ('games/chess') # Delete a game

>>> g.size # File count is automatically updated

2

Besides showing how descriptors can run computations, this example also reveals the purpose of the parameters
to __get__ (). The self parameter is size, an instance of DirectorySize. The obj parameter is either g or s, an
instance of Directory. It is the obj parameter that lets the __get__ () method learn the target directory. The
objtype parameter is the class Directory.

1.3 Managed attributes

A popular use for descriptors is managing access to instance data. The descriptor is assigned to a public attribute in
the class dictionary while the actual data is stored as a private attribute in the instance dictionary. The descriptor’s
__get__ () and __set__ () methods are triggered when the public attribute is accessed.

In the following example, age is the public attribute and _age is the private attribute. When the public attribute is
accessed, the descriptor logs the lookup or update:

import logging
logging.basicConfig(level=logging.INFO)
class LoggedAgeAccess:

def _ get_ (self, obj, objtype=None):
value = obj._age
logging.info ('Accessing giving ', 'age', value)
return value

def _ _set_ (self, obj, value):

logging.info ('Updating to ', 'age', value)
obj._age = value

class Person:

age = LoggedAgeAccess () # Descriptor instance

def _ init__ (self, name, age):
self.name = name # Regular instance attribute
self.age = age # Calls __set__ ()

def birthday (self):
self.age += 1 # Calls both __get__ () and __set__ ()

J

An interactive session shows that all access to the managed attribute age is logged, but that the regular attribute name
is not logged:

>>> mary = Person('Mary M', 30) # The initial age update is logged
INFO:root:Updating 'age' to 30
>>> dave = Person('David D', 40)

INFO:root:Updating 'age' to 40

>>> vars (mary) # The actual data is in a private attribute

(continues on next page)

(continued from previous page)

{'name': 'Mary M', '_age': 30}

>>> vars (dave)

{'name': 'David D', '_age': 40}

>>> mary.age # Access the data and log the lookup
INFO:root:Accessing 'age' giving 30

30

>>> mary.birthday () # Updates are logged as well

INFO:root:Accessing 'age' giving 30
INFO:root:Updating 'age' to 31

>>> dave.name # Regular attribute lookup isn't logged
'David D'

>>> dave.age # Only the managed attribute is logged
INFO:root:Accessing 'age' giving 40

40

One major issue with this example is that the private name _age is hardwired in the LoggedAgeAccess class. That
means that each instance can only have one logged attribute and that its name is unchangeable. In the next example,
we'll fix that problem.

1.4 Customized names

When a class uses descriptors, it can inform each descriptor about which variable name was used.

In this example, the Person class has two descriptor instances, name and age. When the Person class is defined,
it makes a callback to ___set_name__ () in LoggedAccess so that the field names can be recorded, giving each
descriptor its own public_name and private_name:

import logging
logging.basicConfig(level=logging.INFO)

class LoggedAccess:

def _ set_name_ (self, owner, name):
self.public_name = name
self.private_name = '_' + name

def _ get_ (self, obj, objtype=None) :
value = getattr(obj, self.private_name)
logging.info ('Accessing ¢r giving %r', self.public_name, value)
return value

def _ set_ (self, obj, value):

logging.info ('Updating %r to %r', self.public_name, value)
setattr (obj, self.private_name, value)

class Person:

name = LoggedAccess () # First descriptor instance
age = LoggedAccess () # Second descriptor instance
def _ _init__ (self, name, age):
self.name = name # Calls the first descriptor
self.age = age # Calls the second descriptor

def birthday (self):
self.age += 1

An interactive session shows that the Person class has called __set_name__ () so that the field names would
be recorded. Here we call vars () to look up the descriptor without triggering it:

>>> vars (vars (Person) ['"name'])

{'public_name': 'name', 'private_name': '_name'}
>>> vars (vars (Person) ['age'])

{'public_name': 'age', 'private_name': '_age'}

The new class now logs access to both name and age:

>>> pete = Person('Peter P', 10)
INFO:root:Updating 'name' to 'Peter P'
INFO:root:Updating 'age' to 10

>>> kate = Person('Catherine C', 20)
INFO:root:Updating 'name' to 'Catherine C'
INFO:root:Updating 'age' to 20

The two Person instances contain only the private names:

>>> vars (pete)

{'_name': 'Peter P', '_age': 10}
>>> vars (kate)
{'_name': 'Catherine C', '_age': 20}

1.5 Closing thoughts

A descriptor is what we call any object that defines __get__ (), ___set_ (),or__delete_ ().

Optionally, descriptors can have a ___set_name__ () method. This is only used in cases where a descriptor needs
to know either the class where it was created or the name of class variable it was assigned to. (This method, if present,
is called even if the class is not a descriptor.)

Descriptors get invoked by the dot operator during attribute lookup. If a descriptor is accessed indirectly with
vars (some_class) [descriptor_name], the descriptor instance is returned without invoking it.

Descriptors only work when used as class variables. When put in instances, they have no effect.

The main motivation for descriptors is to provide a hook allowing objects stored in class variables to control what
happens during attribute lookup.

Traditionally, the calling class controls what happens during lookup. Descriptors invert that relationship and allow
the data being looked-up to have a say in the matter.

Descriptors are used throughout the language. It is how functions turn into bound methods. Common tools like
classmethod (), staticmethod (), property (), and functools.cached_property () are all
implemented as descriptors.

2 Complete Practical Example

In this example, we create a practical and powerful tool for locating notoriously hard to find data corruption bugs.

2.1 Validator class

A validator is a descriptor for managed attribute access. Prior to storing any data, it verifies that the new value meets
various type and range restrictions. If those restrictions aren’t met, it raises an exception to prevent data corruption
at its source.

This Validator class is both an abstract base class and a managed attribute descriptor:

from abc import ABC, abstractmethod
class Validator (ARC) :

def _ set_name__ (self, owner, name):
self.private_name = '_' + name

def _ get_ (self, obj, objtype=None) :
return getattr (obj, self.private_name)

def _ set_ (self, obj, value):
self.validate (value)
setattr(obj, self.private_name, value)

@abstractmethod
def validate (self, wvalue):
pass

J

Custom validators need to inherit from Validator and must supply a validate () method to test various re-
strictions as needed.

2.2 Custom validators

Here are three practical data validation utilities:
1) OneOf verifies that a value is one of a restricted set of options.

2) Number verifies that a value is either an int or f1oat. Optionally, it verifies that a value is between a given
minimum or maximum.

3) String verifies that a value is a st r. Optionally, it validates a given minimum or maximum length. It can
validate a user-defined predicate as well.

class OneOf (Validator) :

def _ init__ (self, *options):
self.options = set (options)

def validate(self, wvalue):
if value not in self.options:
raise ValueError (
f'Expected {value to be one of {self.options !

class Number (Validator) :

def _ init_ (self, minvalue=None, maxvalue=None) :
self.minvalue = minvalue
self.maxvalue = maxvalue

def validate(self, wvalue):
if not isinstance(value, (int, float)):
raise TypeError (f'Expected {value to be an int or float')
if self.minvalue is not None and value < self.minvalue:

(continues on next page)

https://en.wikipedia.org/wiki/Predicate_(mathematical_logic)

(continued from previous page)

raise ValueError (
f'Expected {value!/r} to be at least {self.minvalue!/r}'
)
if self.maxvalue is not None and value > self.maxvalue:
raise ValueError (
f'Expected {value!/r} to be no more than {self.maxvalue!/r}'

class String(Validator):

def _ init__ (self, minsize=None, maxsize=None, predicate=None) :
self.minsize = minsize
self.maxsize = maxsize
self.predicate = predicate

def validate (self, wvalue):
if not isinstance (value, str):
raise TypeError (f'Expected {value!/r} to be an str')
if self.minsize is not None and len(value) < self.minsize:
raise ValueError (
f'Expected {value!/r} to be no smaller than {self.minsize!/r}'
)
if self.maxsize is not None and len(value) > self.maxsize:
raise ValueError (
f'Expected {value!/r} to be no bigger than {self.maxsize!/r}'
)
if self.predicate is not None and not self.predicate(value) :
raise ValueError (
f'Expected {self.predicate} to be true for {value!/r}'

2.3 Practical application

Here’s how the data validators can be used in a real class:

class Component:

name = String(minsize=3, maxsize=10, predicate=str.isupper)
kind = OneOf ('wood', 'metal', 'plastic')
quantity = Number (minvalue=0)

def _ _init__ (self, name, kind, quantity):
self.name = name
self.kind = kind
self.quantity = quantity

The descriptors prevent invalid instances from being created:

>>> Component ('Widget', 'metal', 5) # Blocked: 'Widget' is not all uppercase
Traceback (most recent call last):

ValueError: Expected <method 'isupper' of 'str' objects> to be true for 'Widget'

>>> Component ('WIDGET', 'metle', 5) # Blocked: 'metle' is misspelled
Traceback (most recent call last):

ValueError: Expected 'metle' to be one of {'metal', 'plastic', 'wood'}

>>> Component ('WIDGET', 'metal', -5) # Blocked: -5 is negative
(continues on next page)

(continued from previous page)

Traceback (most recent call last):
ValueError: Expected -5 to be at least 0

>>> Component ('WIDGET', 'metal', 'V') # Blocked: 'V' isn't a number
Traceback (most recent call last):

TypeError: Expected 'V' to be an int or float

>>> ¢ = Component ('WIDGET', 'metal', 5) # Allowed: The inputs are valid

3 Technical Tutorial

What follows is a more technical tutorial for the mechanics and details of how descriptors work.

3.1 Abstract

Defines descriptors, summarizes the protocol, and shows how descriptors are called. Provides an example showing
how object relational mappings work.

Learning about descriptors not only provides access to a larger toolset, it creates a deeper understanding of how
Python works.

3.2 Definition and introduction

In general, a descriptor is an attribute value that has one of the methods in the descriptor protocol. Those methods
are __get_ (),__set__(),and __delete__ (). If any of those methods are defined for an attribute, it is
said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance,
a . x has a lookup chain starting with a.___dict__ ['x'],thentype(a).__dict__['x'], and continuing
through the method resolution order of t ype (a) . If the looked-up value is an object defining one of the descriptor
methods, then Python may override the default behavior and invoke the descriptor method instead. Where this occurs
in the precedence chain depends on which descriptor methods were defined.

Descriptors are a powerful, general purpose protocol. They are the mechanism behind properties, methods, static
methods, class methods, and super (). They are used throughout Python itself. Descriptors simplify the underlying
C code and offer a flexible set of new tools for everyday Python programs.

3.3 Descriptor protocol

descr.__get__ (self, obj, type=None)
descr.__set__ (self, obj, value)
descr.__delete_ (self, obj)

That is all there is to it. Define any of these methods and an object is considered a descriptor and can override default
behavior upon being looked up as an attribute.

If an object defines __set__ () or __delete__ (), it is considered a data descriptor. Descriptors that only
define __get__ () are called non-data descriptors (they are often used for methods but other uses are possible).

Data and non-data descriptors differ in how overrides are calculated with respect to entries in an instance’s dictionary.
If an instance’s dictionary has an entry with the same name as a data descriptor, the data descriptor takes precedence.
If an instance’s dictionary has an entry with the same name as a non-data descriptor, the dictionary entry takes
precedence.

To make a read-only data descriptor, define both __get_ () and __set__ () withthe _ set__ () raising
an AttributeError when called. Defining the _set_ () method with an exception raising placeholder is
enough to make it a data descriptor.

3.4 Overview of descriptor invocation

A descriptor can be called directly with desc.___get_ (obj) ordesc.__get__ (None, cls).
But it is more common for a descriptor to be invoked automatically from attribute access.

The expression obj . x looks up the attribute x in the chain of namespaces for obj. If the search finds a descriptor
outside of the instance __dict__,its _ get__ () method is invoked according to the precedence rules listed
below.

The details of invocation depend on whether ob 7 is an object, class, or instance of super.

3.5 Invocation from an instance

Instance lookup scans through a chain of namespaces giving data descriptors the highest priority, followed by instance
variables, then non-data descriptors, then class variables, and lastly ___getattr__ () if it is provided.

If a descriptor is found for a . x, then it is invoked with: desc.__get__(a, type(a)).

The logic for a dotted lookup is in object .__getattribute__ (). Here is a pure Python equivalent:

def find_name_in_mro(cls, name, default):
"Emulate _PyType_Lookup () in Objects/typeobject.c"
for base in cls. mro_
if name in vars (base):
return vars (base) [name]
return default

def object_getattribute (obj, name) :
"Emulate PyObject_GenericGetAttr () in Objects/object.c"
null = object ()
objtype = type (obj)

cls_var = find_name_in_mro (objtype, name, null)
descr_get = getattr(type(cls_var), '__get__ ', null)
if descr_get is not null:
if (hasattr(type(cls_var), '__set_ ")
or hasattr (type(cls_var), '_ _delete_ '")):
return descr_get (cls_var, obj, objtype) # data descriptor
if hasattr(obj, '__dict ') and name in vars (obj):
return vars (obj) [name] # instance variable
if descr_get is not null:
return descr_get (cls_var, obj, objtype) # non-data descriptor
if cls_var is not null:
return cls_var # class variable

raise AttributeError (name)

J

Note, there is no __ getattr__ () hook in the _ getattribute__ () code. That is why calling
__getattribute__ () directlyor with super () .__getattribute__ willbypass__getattr__ () en-
tirely.

Instead, it is the dot operator and the getattr () function that are responsible for invoking __getattr__ ()
whenever __getattribute_ () raises an AttributeError. Their logic is encapsulated in a helper func-
tion:

def getattr_hook (obj, name):
"Emulate slot_tp_getattr_hook () in Objects/typeobject.c"
try:
(continues on next page)

10

(continued from previous page)

return obj.__getattribute__ (name)
except AttributeError:
if not hasattr(type(obj), ' _getattr_'):
raise
return type (obj)._ _getattr__ (obj, name) # __getattr__

3.6 Invocation from a class

The logic for a dotted lookup suchas A.xisintype.__getattribute__ (). The steps are similar to those for
object._ _getattribute_ () but the instance dictionary lookup is replaced by a search through the class’s
method resolution order.

If a descriptor is found, it is invoked with desc.__get__ (None, A).

The full C implementation can be found in type_getattro() and _PyType_Lookup () in Ob-
jects/typeobject.c.

3.7 Invocation from super

The logic for super’s dotted lookup is in the __getattribute__ () method for object returned by super ().

A dotted lookup such as super (A, obj) .msearches obj.__class__.__ mro__ for the base class B imme-
diately following A and thenreturns B. __dict_ ['m']._ _get__ (obj, A).Ifnotadescriptor, misreturned
unchanged.

The full C implementation can be found in super_getattro () in Objects/typeobject.c. A pure Python equiv-
alent can be found in Guido’s Tutorial.

3.8 Summary of invocation logic
The mechanism for descriptors is embedded in the _ _getattribute__ () methods for object, type, and
super ().
The important points to remember are:
o Descriptors are invoked by the ___getattribute__ () method.
« Classes inherit this machinery from object, type, or super ().

e Overriding __getattribute__ () prevents automatic descriptor calls because all the descriptor logic is
in that method.

e Object._ _getattribute_ () and type._ getattribute__ () make different calls to
__get__ (). The first includes the instance and may include the class. The second puts in None for the
instance and always includes the class.

 Data descriptors always override instance dictionaries.

» Non-data descriptors may be overridden by instance dictionaries.

11

https://github.com/python/cpython/tree/main/Objects/typeobject.c
https://github.com/python/cpython/tree/main/Objects/typeobject.c
https://github.com/python/cpython/tree/main/Objects/typeobject.c
https://www.python.org/download/releases/2.2.3/descrintro/#cooperation

3.9 Automatic name notification

Sometimes it is desirable for a descriptor to know what class variable name it was assigned to. When a new class is
created, the t ype metaclass scans the dictionary of the new class. If any of the entries are descriptors and if they
define __set_name__ (), that method is called with two arguments. The owner is the class where the descriptor
is used, and the name is the class variable the descriptor was assigned to.

The implementation details are in type_new () and set_names () in Objects/typeobject.c.

Since the update logic is in type.__new__ (), notifications only take place at the time of class creation. If
descriptors are added to the class afterwards, __set_name__ () will need to be called manually.

3.10 ORM example

The following code is a simplified skeleton showing how data descriptors could be used to implement an object
relational mapping.

The essential idea is that the data is stored in an external database. The Python instances only hold keys to the
database’s tables. Descriptors take care of lookups or updates:

class Field:

def _ set_name__ (self, owner, name):
self.fetch = £'SELECT {name} FROM {owner.table} WHERE {owner.key/=?;"'
self.store = f'UPDATE {owner.table} SET {name}=? WHERE {owner.key}=7?;'

def _ get_ (self, obj, objtype=None) :
return conn.execute (self.fetch, [obj.key]).fetchone() [0]

def _ set_ (self, obj, value):

conn.execute (self.store, [value, obj.key])
conn.commit ()

We can use the Field class to define models that describe the schema for each table in a database:

class Movie:
table = 'Movies' # Table name
key = 'title' # Primary key
director = Field()
year = Field()

def _ _init__ (self, key):
self.key = key

class Song:
table = 'Music'
key = 'title'
artist = Field()
year = Field()
genre = Field()

def _ init__ (self, key):
self.key = key

To use the models, first connect to the database:

>>> import sqglite3
>>> conn = sqglite3.connect ('entertainment.db')

An interactive session shows how data is retrieved from the database and how it can be updated:

12

https://github.com/python/cpython/tree/main/Objects/typeobject.c
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping
https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping
https://en.wikipedia.org/wiki/Database_model

>>> Movie ('Star Wars') .director

'George Lucas'

>>> jaws = Movie ('Jaws')

>>> f'Released in {jaws.year} by {jaws.director}'
'Released in 1975 by Steven Spielberg'

>>> Song ('Country Roads') .artist
'John Denver'

>>> Movie ('Star Wars') .director = 'J.J. Abrams'
>>> Movie ('Star Wars') .director
'J.J. Abrams'

4 Pure Python Equivalents

The descriptor protocol is simple and offers exciting possibilities. Several use cases are so common that they have
been prepackaged into built-in tools. Properties, bound methods, static methods, class methods, and __slots__ are
all based on the descriptor protocol.

4.1 Properties

Calling property () is a succinct way of building a data descriptor that triggers a function call upon access to an
attribute. Its signature is:

[property(fgetzNone, fset=None, fdel=None, doc=None) -> property

The documentation shows a typical use to define a managed attribute x:

class C:
def getx(self): return self.
def setx(self, wvalue): self.
def delx(self): del self._ x
X = property(getx, setx, delx, "I'm the 'x' property.")

_x
x = value

To see how property () is implemented in terms of the descriptor protocol, here is a pure Python equivalent that
implements most of the core functionality:

class Property:
"Emulate PyProperty_Type () in Objects/descrobject.c"

def _ _init__ (self, fget=None, fset=None, fdel=None, doc=None) :
self.fget = fget
self.fset = fset
self.fdel = fdel
if doc is None and fget is not None:
doc = fget.__doc_

self. doc = doc
def set_name (self, owner, name) :
self. name_ = name

def _ get_ (self, obj, objtype=None) :
if obj is None:
return self
if self.fget is None:
raise AttributeError
return self.fget (obj)

(continues on next page)

13

(continued from previous page)

def _ set_ (self, obj, value):
if self.fset is None:
raise AttributeError

self.fset (obj, value)

def _ delete_ (self, obj):
if self.fdel is None:
raise AttributeError
self.fdel (ob7j)

def getter(self, fget):
return type (self) (fget, self.fset, self.fdel, self. doc_)

def setter(self, fset):
return type (self) (self.fget, fset, self.fdel, self. doc_)

def deleter(self, fdel):
return type (self) (self.fget, self.fset, fdel, self. doc_)

The property () builtin helps whenever a user interface has granted attribute access and then subsequent changes
require the intervention of a method.

For instance, a spreadsheet class may grant access to a cell value through Cell ('b10") .value. Subsequent
improvements to the program require the cell to be recalculated on every access; however, the programmer does not
want to affect existing client code accessing the attribute directly. The solution is to wrap access to the value attribute
in a property data descriptor:

class Cell:

@property

def value(self):
"Recalculate the cell before returning value"
self.recalc()
return self._value

Either the built-in property () orour Property () equivalent would work in this example.

4.2 Functions and methods
Python’s object oriented features are built upon a function based environment. Using non-data descriptors, the two
are merged seamlessly.

Functions stored in class dictionaries get turned into methods when invoked. Methods only differ from regular func-
tions in that the object instance is prepended to the other arguments. By convention, the instance is called self but
could be called rhis or any other variable name.

Methods can be created manually with t ypes .MethodType which is roughly equivalent to:

class MethodType:
"Emulate PyMethod_Type in Objects/classobject.c"

def _ init__ (self, func, obj):

self. func = func
self. self = obj

def _ call_ (self, *args, **kwargs):
func = self._ func_

obj = self. self
(continues on next page)

14

(continued from previous page)

return func(obj, *args, **kwargs)

def _ _getattribute__ (self, name):
"Emulate method_getset () in Objects/classobject.c"

if name == '__ _doc_ ':
return self. func . doc
return object._ _getattribute__ (self, name)

def _ _getattr__ (self, name):
"Emulate method_getattro() in Objects/classobject.c"
return getattr(self. func_ , name)

def _ get_ (self, obj, objtype=None) :
"Emulate method_descr_get () in Objects/classobject.c"
return self

To support automatic creation of methods, functions include the __get__ () method for binding methods during
attribute access. This means that functions are non-data descriptors that return bound methods during dotted lookup

from an instance. Here’s how it works:

class Function:

def @ get_ (self, obj, objtype=None):
"Simulate func_descr_get () in Objects/funcobject.c"
if obj is None:
return self
return MethodType (self, obj)

Running the following class in the interpreter shows how the function descriptor works in practice:

class D:
def f(self):
return self

class D2:
pass

The function has a qualified name attribute to support introspection:

J

>>> D.f.__ _qualname__ _
'D.f!
Accessing the function through the class dictionary does not invoke ___get__ (). Instead, it just returns the under-

lying function object:

>>> D. dict ['"f']
<function D.f at 0x00C45070>

Dotted access from a class calls ___get__ () which just returns the underlying function unchanged:

>>> D.f
<function D.f at 0x00C45070>

|

The interesting behavior occurs during dotted access from an instance. The dotted lookup calls __get
returns a bound method object:

__ () which

>>> d = D()
>>> d.f
<bound method D.f of <_ main__.D object at 0x00B18C90>>

15

Internally, the bound method stores the underlying function and the bound instance:

>>> d.f._ func___
<function D.f at 0x00C45070>

>>> d.f. self
<__main__.D object at 0x00B18C90>

If you have ever wondered where self comes from in regular methods or where cls comes from in class methods, this
is it!

4.3 Kinds of methods

Non-data descriptors provide a simple mechanism for variations on the usual patterns of binding functions into meth-
ods.

To recap, functions have a __get__ () method so that they can be converted to a method when accessed as at-
tributes. The non-data descriptor transforms an obj.f (*args) call into £ (obj, *args). Calling cls.
f(*args) becomes £ (*args).

This chart summarizes the binding and its two most useful variants:

Transformation Called from an object Called from a class

function f(obj, *args) f(*args)
staticmethod f(*args) f(*args)
classmethod f(type(obj), *args) f(cls, *args)

4.4 Static methods

Static methods return the underlying function without changes. Calling either c . £ or C. £ is the equivalent of a direct
lookup into object.__getattribute_ (c, "f") orobject._ getattribute_ (C, "f"). As
a result, the function becomes identically accessible from either an object or a class.

Good candidates for static methods are methods that do not reference the sel £ variable.

For instance, a statistics package may include a container class for experimental data. The class provides normal
methods for computing the average, mean, median, and other descriptive statistics that depend on the data. However,
there may be useful functions which are conceptually related but do not depend on the data. For instance, erf (x)
is handy conversion routine that comes up in statistical work but does not directly depend on a particular dataset.
It can be called either from an object or the class: s.erf (1.5) --> 0.9332 or Sample.erf (1.5) —->
0.9332.

Since static methods return the underlying function with no changes, the example calls are unexciting:

class E:
@staticmethod
def f(x):
return x * 10

>>> E.f(3)
30

>>> E().f(3)
30

Using the non-data descriptor protocol, a pure Python version of staticmethod () would look like this:

16

import functools

class StaticMethod:
"Emulate PyStaticMethod_Type () in Objects/funcobject.c"

def _ init_ (self, f):
self.f = £
functools.update_wrapper (self, £f)

def _ get_ (self, obj, objtype=None) :
return self.f

def _ call__ (self, *args, **kwds):
return self.f (*args, **kwds)

@property
def _ annotations_ (self):
return self.f. annotations_

The functools.update_wrapper () calladdsa__ wrapped___ attribute that refers to the underlying func-
tion. Also it carries forward the attributes necessary to make the wrapper look like the wrapped function, including
__name__,__qualname__ ,and __doc__.

4.5 Class methods

Unlike static methods, class methods prepend the class reference to the argument list before calling the function. This
format is the same for whether the caller is an object or a class:

class F:
@classmethod
def f(cls, x):
return cls.__ _name__, Xx

>>> F.f(3)
('"F', 3)

>>> F () .£(3)
('F', 3)

This behavior is useful whenever the method only needs to have a class reference and does not rely on data stored in
a specific instance. One use for class methods is to create alternate class constructors. For example, the classmethod
dict.fromkeys () creates a new dictionary from a list of keys. The pure Python equivalent is:

class Dict (dict) :
@classmethod
def fromkeys(cls, iterable, value=None) :
"Emulate dict_fromkeys () in Objects/dictobject.c"

d = cls()
for key in iterable:
dlkey] = value

return d

Now a new dictionary of unique keys can be constructed like this:

>>> d = Dict.fromkeys ('abracadabra')

>>> type(d) is Dict

True

>>> d

{'a': None, 'b': None, 'r': None, 'c': None, 'd': None}

Using the non-data descriptor protocol, a pure Python version of classmethod () would look like this:

17

import functools

class ClassMethod:
"Emulate PyClassMethod_Type () in Objects/funcobject.c"

def _ init_ (self, f):
self.f = £
functools.update_wrapper (self, £f)

def _ get_ (self, obj, cls=None):
if cls is None:
cls = type (obj)
return MethodType (self.f, cls)

J

The functools.update_wrapper () callin ClassMethod addsa __wrapped___ attribute that refers to
the underlying function. Also it carries forward the attributes necessary to make the wrapper look like the wrapped
function: __name_ , _ qualname_ ,__doc_ ,and __annotations__.

4.6 Member objects and __slots__
When a class defines __slots__, it replaces instance dictionaries with a fixed-length array of slot values. From a
user point of view that has several effects:

1. Provides immediate detection of bugs due to misspelled attribute assignments. Only attribute names specified in
__slots__ are allowed:

class Vehicle:
__slots__ = ('id_number', 'make', 'model')

>>> auto = Vehicle ()
>>> guto.id_nubmer = 'VYE483814LOEX'
Traceback (most recent call last):

AttributeError: 'Vehicle' object has no attribute 'id_nubmer'

2. Helps create immutable objects where descriptors manage access to private attributes stored in __slots__:

class Immutable:
slots = ('_dept', '_name') # Replace the instance dictionary

def _ init__ (self, dept, name):

self._dept = dept # Store to private attribute
self._name = name # Store to private attribute
@property # Read-only descriptor

def dept (self):
return self._dept

@property
def name (self): # Read-only descriptor
return self._name

>>> mark = Immutable ('Botany', 'Mark Watney')
>>> mark.dept

'Botany'’

>>> mark.dept = 'Space Pirate'

Traceback (most recent call last):

AttributeError: property 'dept' of 'Immutable' object has no setter

(continues on next page)

18

(continued from previous page)

>>> mark.location = 'Mars'
Traceback (most recent call last):

AttributeError: 'Immutable' object has no attribute 'location'

3. Saves memory. On a 64-bit Linux build, an instance with two attributes takes 48 bytes with __slots__ and
152 bytes without. This flyweight design pattern likely only matters when a large number of instances are going to
be created.

4. Improves speed. Reading instance variables is 35% faster with __slots__ (as measured with Python 3.10 on
an Apple M1 processor).

5. Blocks tools like functools.cached_property () which require an instance dictionary to function cor-
rectly:

from functools import cached_property

class CP:
__slots___ = () # Eliminates the instance dict
@cached_property # Requires an instance dict

def pi(self):
return 4 * sum((-1.0)**n / (2.0*n + 1.0)
for n in reversed(range (100_000)))

>>> CP () .pi
Traceback (most recent call last):

TypeError: No '__dict__ ' attribute on 'CP' instance to cache 'pi' property.

It is not possible to create an exact drop-in pure Python version of __slots___ because it requires direct access to C
structures and control over object memory allocation. However, we can build a mostly faithful simulation where the
actual C structure for slots is emulated by a private _slotvalues list. Reads and writes to that private structure
are managed by member descriptors:

null = object ()
class Member:

def _ init_ (self, name, clsname, offset):
'Emulate PyMemberDef in Include/structmember.h'
Also see descr_new() in Objects/descrobject.c
self.name = name
self.clsname = clsname
self.offset = offset

def get__ (self, obj, objtype=None) :
'Emulate member_get () in Objects/descrobject.c'
Also see PyMember_GetOne () in Python/structmember.c
if obj is None:
return self
value = obj._slotvalues[self.offset]
if value is null:
raise AttributeError (self.name)
return value

def _ set_ (self, obj, value):

'Emulate member_set () in Objects/descrobject.c'
obj._slotvalues|[self.offset] = value

def _ delete_ (self, obj):
(continues on next page)

19

https://en.wikipedia.org/wiki/Flyweight_pattern

(continued from previous page)

'Emulate member_delete() in Objects/descrobject.c'
value = obj._slotvalues[self.offset]
if value is null:

raise AttributeError (self.name)
obj._slotvalues|[self.offset] = null

def _ repr_ (self):
'Emulate member_repr () in Objects/descrobject.c'
return f'<Member {self.name!/r} of {self.clsname!/r}>"'

The type.__new__ () method takes care of adding member objects to class variables:

class Type (type) :
'Simulate how the type metaclass adds member objects for slots'

def _ new__ (mcls, clsname, bases, mapping, **kwargs):
'Emulate type_new () in Objects/typeobject.c'
type_new() calls PyTypeReady () which calls add_methods ()
slot_names = mapping.get ('slot_names', [])
for offset, name in enumerate (slot_names) :
mapping[name] = Member (name, clsname, offset)
return type._ _new__ (mcls, clsname, bases, mapping, **kwargs)

The object.__new__ () method takes care of creating instances that have slots instead of an instance dictionary.
Here is a rough simulation in pure Python:

class Object:
'Simulate how object._ _new_ () allocates memory for _ slots_ '

def _ new__ (cls, *args, **kwargs):
'Emulate object_new() in Objects/typeobject.c'

inst = super().__new__ (cls)

if hasattr(cls, 'slot_names'):
empty_slots = [null] * len(cls.slot_names)
object.__setattr_ (inst, '_slotvalues', empty_slots)

return inst

def _ setattr_ (self, name, value):
'Emulate _PyObject_GenericSetAttrWithDict () Objects/object.c'
cls = type (self)

if hasattr(cls, 'slot_names') and name not in cls.slot_names:
raise AttributeError (
f'{cls._ name__!r} object has no attribute {name!/r}’'
)
super () ._ _setattr__ (name, value)

def _ delattr_ (self, name):
'Emulate _PyObject_GenericSetAttrWithDict () Objects/object.c'

cls = type(self)

if hasattr(cls, 'slot_names') and name not in cls.slot_names:
raise AttributeError (
f'{cls._ name__!r} object has no attribute {name!/r}’'
)
super () ._ _delattr__ (name)

To use the simulation in a real class, just inherit from Object and set the metaclass to Type:

class H(Object, metaclass=Type) :
'Instance variables stored in slots'

slot_names = ['x', 'y']

(continues on next page)

20

(continued from previous page)

def _ init_ (self, x, y):
self.x = x
self.y =y

At this point, the metaclass has loaded member objects for x and y:

>>> from pprint import pp
>>> pp (dict (vars (H)))

{'__module_ ': '_ _main_ ',
' _doc__': 'Instance variables stored in slots',
'slot_names': ['x', 'yv'l],
'_init_ '": <function H._ _init__ at 0x7fb5d302f£9d0>,
'x': <Member 'x' of 'H'>,

'y': <Member 'y' of 'H'>}

When instances are created, they have a s1ot_values list where the attributes are stored:

>>> h = H(10, 20)

>>> vars (h)
{'_slotvalues': [10, 201}
>>> h.x = 55

>>> vars (h)
{'_slotvalues': [55, 20]}

Misspelled or unassigned attributes will raise an exception:

>>> h.xz
Traceback (most recent call last):

AttributeError: 'H' object has no attribute 'xz'

21

	Primer
	Simple example: A descriptor that returns a constant
	Dynamic lookups
	Managed attributes
	Customized names
	Closing thoughts

	Complete Practical Example
	Validator class
	Custom validators
	Practical application

	Technical Tutorial
	Abstract
	Definition and introduction
	Descriptor protocol
	Overview of descriptor invocation
	Invocation from an instance
	Invocation from a class
	Invocation from super
	Summary of invocation logic
	Automatic name notification
	ORM example

	Pure Python Equivalents
	Properties
	Functions and methods
	Kinds of methods
	Static methods
	Class methods
	Member objects and __slots__

